Chapitre 1. Corrigés des exercices.

Exercice A.2.5 : Utiliser dans cet exercice l'équivalence $P \Rightarrow Q \Leftrightarrow (non P \text{ ou } Q)$, les règles de distributivité, commutativité et associativité.

$$\mathbf{1.}\ Q \Rightarrow (P \Rightarrow Q) \quad \Leftrightarrow \quad Q \Rightarrow (nonP \text{ ou } Q) \quad \Leftrightarrow \quad nonQ \text{ ou } (nonP \text{ ou } Q) \quad \Leftrightarrow \quad \underbrace{(nonQ \text{ ou } Q)}_{\text{tautologie}} \text{ ou } nonP)$$

Toujours vraie.

2.
$$P \Rightarrow (P \Rightarrow Q) \Leftrightarrow P \Rightarrow (non P \text{ ou } Q) \Leftrightarrow non P \text{ ou } (non P \text{ ou } Q) \Leftrightarrow non P \text{ ou } Q$$
 Faux si P est vraie et Q est fausse.

3.
$$P \Rightarrow (P \text{ ou } Q) \Leftrightarrow non P \text{ ou } (P \text{ ou } Q) \Leftrightarrow \underbrace{(non P \text{ ou } P)}_{\text{tautologie}} \text{ ou } Q)$$

Toujours vraie

4.
$$P \Rightarrow (P \text{ et } Q) \Leftrightarrow nonP \text{ ou } (P \text{ et } Q) \Leftrightarrow \underbrace{(nonP \text{ ou } P)}_{\text{tautologie}} \text{ et } (nonP \text{ ou } Q) \Leftrightarrow (nonP \text{ ou } Q)$$

Faux si *P* est vraie et *Q* est fausse.

5. identique à 3.

6.
$$(P \text{ et } Q) \Rightarrow Q \Leftrightarrow (non P \text{ ou } non Q) \text{ ou } Q \Leftrightarrow \underbrace{(non Q \text{ ou } Q)}_{\text{tautologie}} \text{ ou } non P)$$

Toujours vraie.

Exercice A.2.16

1. Utiliser les deux équivalences vues en cours :

$$(P \Rightarrow Q) \Leftrightarrow ((\operatorname{non} P) \text{ ou } Q)$$
 et $(P \Rightarrow Q) \Leftrightarrow (\operatorname{non} Q \Rightarrow \operatorname{non} P)$

On a donc

$$(P \text{ ou } Q) \Leftrightarrow (\text{non}(\text{non} P) \text{ ou } Q) \Leftrightarrow (\text{non} P \Rightarrow Q) \Leftrightarrow (\text{non} Q \Rightarrow \text{non}(\text{non} P)) \Leftrightarrow (\text{non} Q \Rightarrow P)$$

2. On pose $P := \langle x^5 - x^4 + x^2 + 3 \rangle 0$ et $Q := \langle x < 2 \rangle$.

D'après la question 1., montrer que la proposition (P ou Q) est vraie est équivalent à montrer que la proposition $((\text{non } Q) \Rightarrow P)$ est vraie.

preuve : On suppose $x \ge 2$. On a

$$x^5 - x^4 + x^2 + 3 = x^4(x-1) + x^2 + 3$$
.

$$x \ge 2 \Rightarrow x - 1 \ge 1 > 0 \Rightarrow x^4(x - 1) > 0$$

et

$$x \ge 2 \Rightarrow x^2 + 3 > 0$$

Grâce à la compatibilité de la relation d'ordre avec l'addition, on en déduit que $x^5 - x^4 + x^2 + 3 > 0$. conclusion : L'implication ((non Q) \Rightarrow P) est vraie donc la proposition (P ou Q) est vraie.

Exercice A.2.1: Réécrire ces phrases avec quantificateurs avant d'écrire la négation.

- 1. $\exists x \in \mathbb{R}, f(x) > 2 \text{ ou } g(x) \neq 0.$
- **2.** $\exists n \in \mathbb{Z}, \ n > 0 \text{ et } n \leq 0.$
- **3.** $\forall x \in \mathbb{R}, e^x \leq 1.$
- **4.** $(\forall x \in \mathbb{R}, e^x \neq 1)$ ou $(\exists (x_1, x_2) \in \mathbb{R}^2, x_1 \neq x_2 \text{ et } e^{x_1} = 1 = e^{x_2}).$
- **5.** $x \ge 0$ et \sqrt{x} n'existe pas. (Insister sur le fait qu'on n'utilise pas le symbole $\not\exists$ ici).
- **6.** $n \in \mathbb{N}^*$ et $n^3 n$ n'est pas un multiple de 3.

Exercice A.2.4:

- 1. $\exists x \in E, \exists y \in E, (x \neq y \text{ et } f(x) = f(y)).$
- **2.** $\forall x \in E, \ \forall y \in E, \ (f(x) = f(y) \Rightarrow x = y).$
- 3. $\exists x \in E, \exists y \in E, (f(x) = f(y) \text{ et } x \neq y).$
- **4.** Les deux propositions sont identiques.

Exercice A.2.25:

- **1.** Vrai. En effet, $\forall x \in \mathbb{R}$, $\exists y = -x \in \mathbb{R}$, x + y = 0.
- **2.** Faux car la négation est vraie. En effet, $\forall y \in \mathbb{R}$, $\exists x = -y + 1 \in \mathbb{R}$, $x + y = 1 \neq 0$
- **3.** Faux car la négation est vraie. En effet, $\exists x = 0 \in \mathbb{R}, \ \forall \ y \in \mathbb{R}, \ xy \neq 1$
- **4.** Faux car la négation est vraie. En effet, $\forall y \in \mathbb{R}, \exists x = 0 \in \mathbb{R}, xy = 0 \neq 1$
- **5.** Vrai. En effet, $\exists y = 0 \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ x + y = x + 0 \neq x$. La valeur y = 0 est appelée élément neutre pour l'addition (cf MT03).

Exercice A.2.18: Respecter le symbole "supérieur stricte".

1. Pour $n \in \mathbb{N}$, on énonce la phrase $P(n) := < 2^n > n$ ».

Initialisation à n = 0. $2^n = 2^0 = 1 > n = 0$ donc P(0) est vraie.

Hérédité. Pour $n \ge n_0$ fixé, on montre que $P(n) \Rightarrow P(n+1)$ est vraie.

correction. $2^{n+1} = 2^n + 2^n$. Par hypothèse de récurrence, $2^n > n$ donc on a $2^{n+1} > 2n$. Pour conclure, on utlise la résultat $n \ge 1 \Leftrightarrow 2n \ge n+1$. En concaténant les résultats on aboutit à $2^{n+1} > n+1$.

On a donc démontré l'hérédité pour $n \ge n_0 = 1$. Nous devons donc vérifier que P(1) est vraie également.

<u>Initialisation à n = 1.</u> $2^n = 2^1 = 2 > n = 1$ donc P(1) est vraie.

Conclusion : $\forall n \in \mathbb{N}, 2^n > n$.

Exercice A.2.19.

1. Hérédité de $(P(n))_{n \in \mathbb{N}}$.

Soit $n \ge 0$. On montre que $P(n) \Rightarrow P(n+1)$.

On suppose que P(n) :=« le nombre $A_n = 3^{2n+2} - 2^{n+1}$ est divisible par 7 » est vraie.

$$\begin{split} A_{n+1} &= 3^{2(n+1)+2} - 2^{(n+1)+1} = 3^2 \times 3^{2n+2} - 2^1 \times 2^{n+1} \\ &= 9 \times 3^{2n+2} - 2 \times 2^{n+1} = \underbrace{7 \times 3^{2n+2}}_{\text{divisible par 7}} + 2(3^{2n+2} - 2^{n+1}). \end{split}$$

Par hypothèse de récurrence, le nombre $(3^{2n+2}-2^{n+1})$ est divisible par 7 donc A_{n+1} aussi.

Hérédité de $(Q(n))_{n \in \mathbb{N}}$.

Soit $n \ge 0$. On montre que $Q(n) \Rightarrow Q(n+1)$.

On suppose que Q(n) := « le nombre $B_n = 3^{2n+2} + 2^{n+1}$ est divisible par 7 » est vraie.

$$\begin{split} B_{n+1} &= 3^{2(n+1)+2} + 2^{(n+1)+1} = 3^2 \times 3^{2n+2} + 2^1 \times 2^{n+1} \\ &= 9 \times 3^{2n+2} + 2 \times 2^{n+1} = \underbrace{7 \times 3^{2n+2}}_{\text{divisible par 7}} + 2(3^{2n+2} + 2^{n+1}). \end{split}$$

Par hypothèse de récurrence, le nombre $(3^{2n+2} + 2^{n+1})$ est divisible par 7 donc B_{n+1} aussi.

2. Oui avec $n_0 = 0$. On vérife que P(0) est vraie.

$$A_0 = 3^2 - 2^1 = 9 - 2 = 7.$$

3. Non, il n'existe aucune valeur $n_0 \in \mathbb{N}$ pour initialiser la récurrence.

On peut affirmer que \forall $n \in \mathbb{N}$, non Q(n). On raisonne par l'absurde.

Soit $n \in \mathbb{N}$ tel que Q(n) est vraie. Alors A_n et B_n sont tous deux divisible par 7. La différence $B_n - A_n$ est donc divisible par 7 :

$$\exists k \in \mathbb{N}, B_n - A_n = 2 \times 2^{n+1} = 7k.$$

Ceci est absurde car 2 est le seul diviseur premier de $B_n - A_n$.

La négation est fausse donc la phrase $\forall n \in \mathbb{N}$, non Q(n) est vraie.

Exercice A.2.13: À faire par double implication

1. On montre tout d'abord que n impair et p impair $\Rightarrow np$ impair.

dém : Soit n = 2k + 1 et p = 2k' + 1 avec $kk' \in \mathbb{N}$. Alors,

$$np = (2k+1)(2k'+1) = 4kk' + 2k + 2k' + 1 = 2(2kk'+k+k') + 1 = 2q+1$$
 avec $q = 2kk'+k+k' \in \mathbb{N}$.

On en déduit que np est impair.

2. Pour l'implication réciproque np impair $\Rightarrow n$ impair et p impair, on montre plutôt la contraposée

$$n$$
 pair ou p pair $\Rightarrow np$ pair.

dém : On démontre tout d'abord que n pair $\Rightarrow np$ pair. Soit n=2k avec $k \in \mathbb{N}$ et $p \in \mathbb{N}$. Alors,

$$np = 2k \times p = 2kp = 2q$$
 avec $q = kp \in \mathbb{N}$.

On en déduit que *np* est pair.

Par symétrie (entre n et p), la proposition p pair $\Rightarrow np$ pair est également vraie.

3. L'équivalence est démontrée.

Exercice A.2.23.

1.
$$P := \exists (i, j) \in [0, n], i \neq j \text{ et } |x_i - x_j| \leq \frac{1}{n}.$$

2.
$$\forall (i, j) \in [0, n], i = j \text{ ou } |x_i - x_j| > \frac{1}{n}.$$

3. On montre que *non P* est fausse :

On sait que $0 \le x_0 \le x_n \le 1$ donc $x_n - x_0 \le 1$.

Ensuite on décompose la différence $x_n - x_0$ comme suit

$$x_n - x_0 = \underbrace{(x_n - x_{n-1}) + \dots + (x_2 - x_1) + (x_1 - x_0)}_{\text{il y a bien } n \text{ termes}}$$

D'après le 2. on obtient

$$x_n - x_0 > n \times \frac{1}{n} = 1.$$

On a $x_n - x_0 \le 1$ et $x_n - x_0 > 1$ ce qui est absurde. La négation est fausse donc la proposition P est vraie.

Exercice A.2.20.

- **1.** Avec schéma, on conjecture que $B \subset C$.
- **2.** Pour démontrer une inclusion, on démontre l'implication $x \in B \Rightarrow x \in C$. Les hypothèses sont ① $(A \cap B) \subset (A \cap C)$ et ② $(A \cup B) \subset (A \cup C)$.

$$x \in B \Rightarrow x \in (A \cup B) \underset{\widehat{2}}{\Rightarrow} x \in A \cup C \Rightarrow (x \in A) \text{ ou } (x \in C)$$

On continue par disjoinction de cas:

- Si $x \in A$ alors $x \in A \cap B$. D'après (1), alors $x \in A \cap C \subset C$.
- Si $x \in C$, la démonstration est finie.

Conclusion : On a bien $B \subset C$.

xercice A.2.22. À faire!	