III Les infiniments petits

Application au calcul de limites :

On remplace la fonction par sa partie principale pour lever l'indétermination de type $(\frac{0}{0})$.

Exemple 1. Déterminer la limite de $\frac{\ln(1+x^2)}{1+x-e^x}$ quand $x \to 0$.

Exemple 2. Déterminer la limite de $\frac{x(\ln x)^2}{x^3 - x^2 - x + 1}$ quand $x \to 1$.

:

IV Développement limité

Definition

Soit Ω un intervalle ouvert contenant a et f une fonction définie sur $\Omega \setminus \{a\}$.

On dit que f admet un **développement limité à l'ordre** $n \in \mathbb{N}$ **en** a s'il existe $\alpha_0, \ldots, \alpha_n \in \mathbb{R}$, tels que

$$\forall x = a + h \in \Omega, \qquad f(x) = \alpha_0 + \alpha_1(x - a) + \dots + \alpha_n(x - a)^n + (x - a)^n \varepsilon(x - a)$$
 ou bien
$$f(a + h) = \alpha_0 + \alpha_1 h + \dots + \alpha_n h^n + h^n \varepsilon(h) \quad \text{et } \varepsilon(h) \underset{h \to 0}{\longrightarrow} 0.$$

Exemple 1: Soit $f(x) = \frac{\sin x}{x} \sup \mathbb{R} \setminus \{0\}.$

Exemple 2: Tout fonction de classe \mathscr{C}^n sur un intervalle I avec $a \in I$ admet un DL à l'ordre n en a. Il s'agit du développement de Taylor-Young:

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + (x-a)^n \varepsilon(x-a).$$

∆La réciproque est fausse!

$$\triangle$$
La réciproque est fausse pour $n \ge 2!$

Contre-exemple: Soit
$$f$$
 la fonction définie par $f(x) = \begin{cases} x^3 \cos \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$

1. La fonction f admet un DL à l'ordre 2 en a = 0:

2. La fonction f n'est pas deux fois dérivable en a=0:

Theorem

Le développement limité de f à l'ordre $n \in \mathbb{N}$ en a, lorsqu'il existe, est unique.

Theorem (opérations sur les DLs)

Soient f et g deux fonctions admettant un DL d'ordre $n \in \mathbb{N}$ en a. On note $P_n(x-a)$ et $Q_n(x-a)$ leur partie régulières respectives.

- **1** Si $\lambda \in \mathbb{R}$, alors (λf) admet un DL d'ordre $n \in \mathbb{N}$ en a de partie régulière $\lambda P_n(x-a)$.
- **2** La somme (f+g) admet un DL d'ordre $n \in \mathbb{N}$ en a de partie régulière $P_n(x-a) + Q_n(x-a)$.
- **3** Le produit (fg) admet un DL d'ordre $n \in \mathbb{N}$ en a de partie régulière $P_n(x-a) \times Q_n(x-a)$ tronquée à la puissance n.

Exemples: Soit $f(x) = x \cos x$ et $g(x) = 1 - 3 \sin x$. Déterminer les DLs d'ordre 3 en 0 de (f + g) et (fg).

- \bullet f(x) =
- \bullet g(x) =
- f(x) + g(x) =

Le degré de la partie régulière de $(f+g) \le n=3$

 \bullet (f(x)g(x) =

On tronque la partie régulière de (fg) à l'ordre n=3

Definition (valuation)

La valuation d'un polynôme rangé selon les puissances croissantes est le degré du premier terme non nul. (c'est-à-dire la plus petite puissance parmi les monômes de P_n).

On suppose que $B(0) \neq 0$. Alors

$$\forall n \in \mathbb{N}, \ \exists (Q_n, R_n), \ 2 \text{ polynômes tels que} \quad A = BQ_n + R_n \quad \text{ où } \left\{ \begin{array}{ll} \deg Q_n \leqslant n \\ \operatorname{val} R_n \geqslant n+1 \end{array} \right.$$

Exemple de calcul. Soit $A(x) = 3 + 2x - 6x^2$ et $B(x) = 1 - x^2$.

$3 + 2x - 6x^2$	$1 - x^2$
	•

Definition (valuation)

La valuation d'un polynôme rangé selon les puissances croissantes est le degré du premier terme non nul. (c'est-à-dire la plus petite puissance parmi les monômes de P_n).

On suppose que $B(0) \neq 0$. Alors

$$\forall n \in \mathbb{N}, \ \exists (Q_n, R_n), \ 2 \text{ polynômes tels que} \quad A = BQ_n + R_n \quad \text{ où } \begin{cases} \deg Q_n \leqslant n \\ \operatorname{val} R_n \geqslant n+1 \end{cases}$$

Exemple de calcul. Soit $A(x) = 3 + 2x - 6x^2$ et $B(x) = 1 - x^2$.

$$\begin{array}{c|c}
3 + 2x - 6x^{2} \\
\hline
-3(1 - x^{2}) \\
R_{0} = 2x - 3x^{2}
\end{array}$$

Definition (valuation)

La valuation d'un polynôme rangé selon les puissances croissantes est le degré du premier terme non nul. (c'est-à-dire la plus petite puissance parmi les monômes de P_n).

On suppose que $B(0) \neq 0$. Alors

$$\forall n \in \mathbb{N}, \ \exists (Q_n, R_n), \ 2 \text{ polynômes tels que} \quad A = BQ_n + R_n \quad \text{où } \left\{ \begin{array}{ll} \deg Q_n \leqslant n \\ \operatorname{val} R_n \geqslant n+1 \end{array} \right.$$

Exemple de calcul. Soit $A(x) = 3 + 2x - 6x^2$ et $B(x) = 1 - x^2$.

$$\begin{array}{c|c}
3 + 2x - 6x^{2} \\
\hline
-3(1 - x^{2}) \\
R_{0} = 2x - 3x^{2} \\
-2x(1 - x^{2}) \\
R_{1} = -3x^{2} + 2x^{3}
\end{array}$$

$$\begin{array}{c|c}
1 - x^{2} \\
\hline
2_{0} \\
\varrho_{1}
\end{array}$$

4ロト 4個ト 4 重ト 4 重ト 重 めなべ

Definition (valuation)

La valuation d'un polynôme rangé selon les puissances croissantes est le degré du premier terme non nul. (c'est-à-dire la plus petite puissance parmi les monômes de P_n).

On suppose que $B(0) \neq 0$. Alors

$$\forall n \in \mathbb{N}, \ \exists (Q_n, R_n), \ 2 \text{ polynômes tels que } A = BQ_n + R_n \quad \text{où } \begin{cases} \deg Q_n \leqslant n \\ \operatorname{val} R_n \geqslant n+1 \end{cases}$$

Exemple de calcul. Soit $A(x) = 3 + 2x - 6x^2$ et $B(x) = 1 - x^2$.

$$\begin{array}{c|c}
3 + 2x - 6x^{2} \\
\hline
-3(1 - x^{2}) \\
R_{0} = 2x - 3x^{2} \\
\hline
-2x(1 - x^{2}) \\
R_{1} = -3x^{2} + 2x^{2} \\
\hline
-(-3x^{2})(1 - x^{2}) \\
R_{2} = 2x^{3} - 3x^{4}
\end{array}$$

On a $A = Q_0 B + R_0 = Q_1 B + R_1 = Q_2 B + R_2 = \cdots$

Theorem (quotient de DLs)

Soient f et g deux fonctions admettant un DL d'ordre n en a, càd

$$f(x) = A_n(x-a) + (x-a)^n \varepsilon_1(x-a) \ \ \text{et} \ \ g(x) = B_n(x-a) + (x-a)^n \varepsilon_2(x-a) \ \text{avec} \ \varepsilon_i(h) \underset{h \to 0}{\longrightarrow} 0.$$

On suppose que $B_n(0) \neq 0$. Soit (Q_n, R_n) le résultat de la division selon les puissances croissantes de A_n par B_n . Alors le quotient $\frac{f}{g}$ admet un DL d'ordre n en a dont la partie régulière est $Q_n(x-a)$.

On effectue la division de $A_n(h)$ par $B_n(h)$ pour la variable h = x - a.

Exemple. Déterminer le DL à l'ordre 2 en a = 0 de $\frac{e^x}{1 + \cos x}$.